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Lorentz Lattice Gases: Basic Theory 
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We present several ballistic models of the Lorentz gas in two-dimensional lat- 
tices with deterministic and stochastic deflection rules, and their corresponding 
Liouville equations. Boltzmann-level-equation results are obtained for the 
diffusion coefficient and velocity autocorrelation function for models with 
stochastic deflection rules, The long-time behavior of the mean square dis- 
placement is briefly discussed and the possibility of abnormal diffusion 
indicated. Even if the diffusion coefficient exists, its low-density limit may not be 
given correctly by the Boltzmann equation. 
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1. I N T R O D U C T I O N  

The problem of the motion of one particle in an array of randomly placed 
fixed scatterers wa~ first proposed by Lorentz (t/ as a model of electronic 
motion in a solid. Ehrenfest (2) introduced a four-velocity version, the wind- 
tree model. The density dependence of the transport properties and velocity 
autocorrelation function (VACF) of the Lorentz gas has been extensively 
studied. ~3"4) Similar studies have been made for the wind-tree modelJ 5'6) 
Particularly interesting is the case of overlapping trees, where the mean- 
square displacement grows more slowly than linearly with time (abnormal 
diffusion). Several investigators have studied Lorentz models on lattices. 
Gates and others ~7~ studied the existence of diffusion in lattice wind-tree 
models. Studies of random walks with excluded sites or bonds, which are 
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nonballistic Lorentz models, have answered some questions about particle 
motion in a statically disordered medium. (8) 

Van Beijeren (9) studied extensively one-dimensional Lorentz lattice 
gases. More recently, Binder (1~ proposed lattice models of the Lorentz gas 
where particles follow ballistic trajectories in the absence of scatterers. 
These models are of interest because of recent developments of lattice 
models of hydrodynamics (11) and the large research on the field. (~2) 
Binder (m) gives preliminary results of simulations of the new models. In 
Section 2 we introduce the models and their corresponding Liouville 
equation, followed by its formal solution in Section 3. In Section 4 we 
present the Boltzmann approximation and results for the diffusion coef- 
ficient and VACF for the stochastic models. Section 5 contains a discussion 
of deterministic models and of corrections to the Boltzmann equation. 

2. T H E  M O D E L S  

Consider a d-dimensional, regular, space-filling lattice with N sites, 
unit lattice distance, and a fraction c of sites--chosen at random--occupied 
by scatterers. A particle, or a collection of mutually independent particles, 
moves at times t = 0, 1, 2,... with unit speed from site to site. The trajec- 
tories are straight lines until the particle hits a scatterer. The deflection 
rules, which can be probabilistic or stochastic, define the detailed model. 

We will define the models, for simplicity, in a two-dimensional square 
lattice. The models in different lattices and dimensions can be easily con- 
structed, and we will present some triangular lattice results in Section 4. 
We define directions i = 0 ,  1, 2, 3 .... (module 4) and associate with them 
nearest neighbor lattice vectors pg, as shown in Fig. 1. The system of many 
noninteracting particles is described by the probability density in F-space, 
p~(n, t; {cn}), which is the probability of finding a particle moving in direc- 
tion i at site n in a given configuration of scatterers {en}. We associate with 
each site n a random variable with value 

{~ with probability 1 - c 1 
c~ = with probability c 

( ) 

The distribution function of moving particles f i(n, t) is obtained by 
averaging pi(n, t; {cn}) over all configurations {cn} of scatterers. We denote 
this by 

fi(n, t )=  (pi(n, t ) )  

Collisions between moving particles and scatterers occur only at integer 
values of time. At such values the velocities are not well-defined. We choose 



Lorentz Lattice Gases: Basic Theory 983 

f 
\ 

Fig. 1. Direction vectors for the square  lattice. 

to define f,.(n, t) as the distribution function just after time t. We proceed 
now to describe the models and give their respective Liouville equations, 
which govern the evolution of p~. 

M o d e l  I: If a scatterer is present, the particle velocity Pi becomes 
either Pi+l or Pi-~ (modulo 4), each with probability 1/2. 

The Liouville equation can be constructed from Fig. 1: 

pi(n, t+  1)= (1 --c.)  pi(n--pi ,  t) + �89 t) + pi (n--pi_  l, t)J 

= (1 + c. T) s-lpi(n,  t) (2) 

where s, the free-streaming operator, shifts the argument over one lattice 
unit in the direction of the velocity pi: 

s A ( n ) = A ( n + p , )  (3) 

The binary collision operator is 

T =  �89 + b 3 - 2) (4) 

where bmp~=p~+,, (modulo 4). In other words, b rotates the index i o f &  
by m units, modulo 4. 
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M o d e l  I1: A more general stochastic model is one in which reflec- 
tion occurs with probability 0 < r <  1, left or right scattering with 
probability 0 < v < 1, and transmission with probability 1 - r -  2v >/0. In 
this case the collision operator i s  

T =  v(b + b 3 - 2) + r(b 2 -- 1) (5) 

A particular example of this is isotropic scattering, with r -- v = �88 Model I 
is also a special case of model II, with r = 0, v = �89 

M o d e l  II1: This model, as well as the following two, has deter- 
ministic collision rules. The velocity changes according to 

pi_..+~lOi+l, t = e v e n  

~Pi-  l, t = odd (6) 

As usual, the i___ 1 are taken modulo 4. This leads to the Liouville equation 

pi(n, t +  1 ) = ( 1 - c , ) p i ( n - - p i ,  t) + cnp,+ , ( , ) ( n -  pe, t) 

= [ l + c n T ( t + l ) ] s  lpi (n , t )  
(7) 

The binary collision operator is time-dependent: 

T ( t ) = b ~ ( ' ) - l ,  n( t )=  ( -  1)' (8) 

M o d e l  IV:  This model is a modification of model III, in which left- 
turning and right-turning scatterers occur with equal probability. We define 

l O with.probability 1 - c  

cn -- 1 + =-- 1 + e with probability c/2 

1 - 1 - e with probability c/2 

Then, the Liouville equation for this model is Eq. (2) with 

T = 6 ( c  n, l + ) b + 6 ( c , ,  1 - ) b 3 - 1  

M o d e l  V: This is identical to 
scatterers as right-turning: 

(9) 

ModelV of Gates (7) and has all 

T = b 3 - 1  

The T operators consist in general of a real part T r that changes the 
direction of the moving particle and a virtual part T v that does not. For 
instance, in Eq. (5), Tr = v(b + b 3) -t- rb 2 and T~ = - ( r  + 2v). 
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3. F O R M A L  S O L U T I O N  OF T H E  L IOUVILLE  E Q U A T I O N  

For models I, II, IV, and V with a time-independent collision operator 
T the formal solution to Eq. (2) is given by 

pi(n, t ) =  [(1 + c ~ T ) s - l ] '  p~(n, O) ( l l a )  

For model IIl, with a time-dependent collision operator, this solution is 

pi(n , t )  = H { [ l + c n T ( ' c ) ] s  l )p i (n ,O)  ( l l b )  

For convenience, the following discussion will be restricted to models 
obeying Eq. ( l la) .  The products in this equation can be rearranged in 
terms containing 0, 1, 2, 3 .... T-operators, where each T is followed by at 
least one s- l -operator:  

p i ( n , t ) = ( s - ' +  ~ s ' + % . T s  - ' '  

+ t2cn + ~ s -t+~l Ts ~2cnTs-tt 
tlt2>~ 1 

t l + 1 2 < l  

S -- t + tl + t2 + t3Cn Ts - t3c. Ts - ~Zc. Ts - t~ + . .. + 
/ t I t2t 3 >1 1 

t l + t 2 + t 3 < t  

pi(n, O) 

(12) 

This representation of the formal solution of the Liouville equation is 
completely analogous to the binary collision expansion in the theory of 
hard-sphere gases. ~ 

The first term in Eq. (12) represents free streaming without any 
collisions, i.e., s t A ( n ) = A ( n - t p i ) .  The remaining terms represent time 
convolutions involving free streaming over a time interval tl~> 1, a 
collision, free streaming over a time t2 ~> 1, etc.,..., and finally free streaming 
over a time t - t l -  t2 . . . .  >~ O. 

In view of the convolution products in Eq. (12), it is natural to change 
to a generating function ("Laplace transform" of the t variable, ~ = e -z) 
using 

fie(n, 4 )=  ~ ~'pi(n, t) (13) 
t = 0  
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Then, Eq. (12) becomes 

f i ( n , ~ ) = ( l _ ~ s _ l ) _ l + ( l _ 4 s _ l ) - l c , , T r  1(1_r s 1 ) t +  ... 

= [(1 + cnT) ~s -1 ] -1  (14) 

The distribution function fi(n, 4) is obtained by averaging over all con- 
figurations {c,} of scatterers: ~.(n, ~)=  (fie(n, 4)). 

4. T H E  B O L T Z M A N N  A P P R O X I M A T I O N ;  R E S U L T S  

The successive terms in the time evolution of Eqs. (12) and (14) 
represent trajectories with 0, 1, 2,... particle-scatterer collisions, respectively. 
Collisions after the first one may occur with new scatterers or with one 
of the previously visited ones. For most of the models, the dominant 
contribution at low densities of scatterers comes from collisions with new 
scatterers. We will discuss possible exceptions in the next section. When 
collisions occur with new scatterers only, the term (12) contains sequences 
CnlCn2Cn3,..,  , where all the sites nlr/2n 3 . . . .  are different and the random 
variables cn~, cn2,.., are independent. Their average is the product of the 
average ,c = ( c , ) ,  

(CnlCn2 " ' '  Cnm ) = C m 

The initial distribution pi(n, 0) relevant for describing diffusion coefficients 
does not depend on the random variable cn, as we shall see below. 

We now take the ensemble average of Eq. (12), accounting only for 
uncorrelated collisions, and replace all c~ by (cn)  = c. The resulting kinetic 
equation is the Boltzmann equation, 

fi(n, t) = (pi(n, t) ) = [ ( 1  + cT) s-1] '  pi(n, O) 

or, as a kinetic equation, 

fi(n, t +  1)= (1 + c T ) s - Z ( n ,  t) 

=(1 +cT)  f~ (n -p i ,  t) 

= (1 - c ) Z ( n - p i ,  t )+  1 t )+f i+l (n  t] -~c[f i-  l(n - Pi- l, - Pi+ l, 
(15) 

For the Lorentz gas the diffusion coefficient is given by the Green-Kubo 
formula 

D = dr ~o(r) 

q~(z) = (vx(r) vx(O) ) (16) 

f dr dv dR M Vx(Z) vx(O) Do(r, v, R M) 
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Here R M denotes the configurations of M scatterers and (v, r) the phase of 
the moving particle, and Do(r, v, R ~t) is the distribution function of the 
canonical ensemble. In the stochastic Lorentz models there is a unique 
equilibrium distribution, which is Do = 1/(4N) for the square lattice. For 
the deterministic model, phase space decomposes into closed orbits, and 
the equilibrium state depends on the initial distribution of particles over 
these orbits. Therefore, there is an infinity of stationary states. For this 
reason, we limit the following discussion to stochastic models. 

In lattice models, the VACF is defined through 

cp(t) = ~ (p~x(t) p,~(O)) =~ p~(p~(n, t) ) 
i , n  i,7l 

(17) 

with initial value p~(n, O)= pix/(4N), independent of the random variables 
{c,,}. The diffusion coefficient is given by 

D =  ~ ~o(t)= ~ pix(pi(n, t)) 
t = 0  t = 0  

where p~(n, t) obeys the Liouville equation with formal solution (1 la): 

p~(n, t) = (1/4N)[(1 + c,T) s - l ]  t P~x 

Then, the diffusion coefficient is 

D=(1/4N) ~ ~p,x([(l+c.T) s 1]~)psx 
t = 0 i , n  

(18) 

The Laplace transform of the VACF is 

1 t 1 / r C~o(0=~Epix l _ ~ ( l + c . V ) s  1 p,x 
t = 0 i , n  

(19) 

with D = qs(~ = 1 ). 
In the Boltzmann approximation, one replaces all c, in (19) by 

( c , ) = c ,  according to the discussion at the beginning of this section. 
Consequently, all space dependence in (19) has disappeared, and the 
translation operator s-1 may be replaced by unity. This yields 

1 v 1 
C B ( r  

(20) Pix 

We observe that Pi is an eigenvector of the 4 x 4 matrix T with eigenvalue 
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- L  This eigenvalue for models  I and I I  is )~= 1 and  2 = 2 ( r + v ) ,  respec- 
tively. Thus,  we have 

1 1 3 1 1 

1 -~(1 _ 2c) ~ ,~o p2x = 2 x - ,  1 -~(1 -he)  (21) 

Since q)B(~) = ~F=o ~'r one finds 

~pB(t) = �89 - 2c) '  (22) 

and for the diffusion coefficient 

D = ~ ( 1 ) =  1/(22c) 

This yields, for model  I, 

~ % ( t ) = � 8 9  D . = ( 2 c )  ' (23) 

and for model  II,  

1 1 (24)  
q ~ B ( t ) = ~ ( 1 - 2 c r - 2 c v )  t, DB=4c(r+v  ) 

There  are two special cases of interest in this model.  One  is isotropic 
scattering, in which the particle scatters in any of the four directions with 
probabi l i ty  one-quarter .  Fo r  this case, corresporiding to r = v = �88 we have 

~0B = � 8 9  t, DB = (2c) -1 (25) 

Fo r  the case of one-dimensional  diffusion, we have v = 0, r > 0: 

(p.( t)  = �89 -- 2cr) t, D .  = (4cr) -1 (26) 

We also present  results for models  in a t r iangular  lattice. The  directions, as 
shown in Fig. 2, are 

= = 1  1 = 1  1 po = - p 3  (1, o) ,  p,  = - p 4  3 ( ,  , / 3 ) ,  p2 = - p ~  3 ( -  , ,s 

(a) Lef t - r ight  scattering (u/3 rad)  with equal  probabil i ty:  

T =  �89 + b 5 - 2); )~ = �89 

r = �89 - �89 D = 1/c (27) 

Here  b" denotes  a ro ta t ion  by n7:/3 deg. 
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Fig. 2. Direction vectors for the triangular lattice. 

(b) Uniform, isotropic scattering: 

T = ~  ~ b i - 1 ;  2 = 1  
i =0  

D = (2c)1 ;  ~oB(t) = �89 _ c)~ (28) 

5. D ISCUSSION A N D  CONCLUSIONS 

We have proposed several lattice models for the Lorentz gas. We 
develop the Liouville equation for these models and present its formal 
solution. We solve the Liouville equation in the Boltzmann approximation 
and obtain results for the diffusion coefficient and the velocity 
autocorrelation function even in the case where no diffusion exists. This 
may happen in deterministic models. Here a return to a previously visited 
node with the same velocity (which happens with probability 1 in the 
equivalent random walk) implies that the particle gets locked in a cycle. 
Thus, for very long times, we expect that the mean square displacement 
will grow more slowly than linearly (abnormal diffusion). It has been 
suggested ~4) that the mean square displacement may grow as some power 
of log t. For intermediate times shorter than the length of most orbits, one 
expects the mean-square displacement to grow linearly with time. The 
diffusion coefficient may be calculated from ordinary kinetic theory for 
these intermediate times. We intend to do this in subsequent publications. 
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Even if diffusion exists, the Boltzmann approximation does not always 
yield the correct low-density value of the transport coefficient. This is the 
case, for instance, in the stochastic models that allow reflection (like our 
model II). In such models the ring collisions resulting from two collinear 
scatterers yield such strong divergences that the Boltzmann result is 
modified. More specifically, the coefficient of c k, the kth-order density 
correction to the diffusion coefficient, diverges as t k for large t. Resum- 
mation of the leading divergences effectively replaces t by the mean free 
time to ~ 1/c, yielding at low densities a relative correction of O(cto)~ 0(1) 
to the Boltzmann result. The same situation occurs in the self-diffusion of a 
one-dimensional hard-rod gas. (~s) After locating the mechanism that 
modifies the lowest order Boltzmann transport, it will be straightforward to 
construct deterministic Lorentz lattice gases where the diffusion coefficient 
on the intermediate time scale has the same properties. 
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